

[CPSC 319]

Software Design Specification

First Draft

Date: February 21, 2005

[Team 4]

 1

Version Primary Description of Version Date
 Author(s) Completed

1.0

Aaron Hui,
Sunae Kim,
Andy Kim,
Carter Lukman,
John Wong,
Yow-Hann Lee,
Charles Krzysik

First Draft 02/21/2005

 2

1. INTRODUCTION ……………………..……………………………..……….….4

1.1 SYSTEM OVERVIEW ………………..………………………………....……4
1.2 DEFINISTIONS AND ACRONYMS ……………………..……………..……4

2. DESIGN CONSIDERATIONS ……………………………..…………..…….…5

2.1 ASSUMPTIONS …………………………………………………………...….5
2.2 CONSTRAINTS ………………………………………………………...……..5
2.3 SYSTEM ENVIRONMENT ……………………………………..….….….….6

3. ARCHITECTURE …………………………………………………….…...……..7

3.1 OVERVIEW …………………………………………………………..……….7
3.2 RATIONALE …………………………………………………………..………7

4. HIGH LEVEL DESIGN …………………………………………………..……..8

4.1 CONCEPTUAL VIEW ………………………………………………….…….8

5. LOW LEVEL DESIGN ………………………………………………….….…...9

5.1 MODULE 1..N ……………………………………………………….………..9

6. USER INTERFACE DESIGN ………………………………………….………50

6.1 APPLICATION CONTROL ……………………………………………….…50
6.2 SCREEN 1..N ………………………………………………………………....51

 3

1.1 System Overview

This purpose of this project is to design and implement an online chat program. The

program is intended to be used as part of an interactive live help system where a customer enters
into a chat session with a customer service representative (CSR) and may ask questions in
regards to a product or service.

The system will have three primary users, the customer who asks the questions, the CSR
who answers the questions, and the manager who oversees the CSRs and monitors their overall
performance in regards to their ability to answer questions and solve problems for the customer.
After each chat session a customer may give a single digit rating to the CSR reflecting the
customer’s opinion on the CSR's ability to help and if they choose, write a comment expanding
on their opinions.

Each user of the system will have and account and access the system through a web page
and be identified by their unique login ID and password. In order for a customer to gain access to
the system they will be required to register by filling out a web application with required
information. This information will be used to create a new account for the new customer.

All account and chat information will be stored on a database. The system will be
developed using client/server architecture which will allow the system to be scaled up as the
number of users increase.

1.2 Definitions and Acronyms

Applet - Java based code embedded within a webpage
Manager - the person who is in charge of the CSRs. A manager may operate as a CSR

within the system, taking on all the responsibilities and task that a CSR may
perform

Customer - the customer who engages in real time chat
Database - SQL based database containing customer information
GUI - Graphical User Interface
JDK - Java Development Kit used for compiling Java code.
JDBC Driver - A requirement for Java Database Connectivity to communicate with the

 database using the database's native networking protocols.
JVM - Java Virtual Machine used during execution of Java code.
OS - Operating System
Server - A computer hosting the chat software
SQL - Structured Query Language; used for querying and updating a database
Interface - the graphical user interface or the display that encapsulates functionality
Scalable - the ability to upgrade or to reuse existing material to satisfy future requirements

 4

2.1 Assumptions

The system is to be run on UNIX and Windows machines. The systems are assumed to

have web browsers pre-installed. The list includes: Firefox, Internet Explorer 5.5 and later and
Mozilla. Customers are assumed to all be connected via high speed internet. Therefore, the
consumption of bandwidth by the system will not be an issue. We also assume that hardware
and server components can be upgraded to satisfy the criteria for withstanding increasing
demands for live customer support. Lastly, managers and CSRs are assumed to have sufficient
technical training to manage the system. The manager should be trained to maintain the MySQL
database of the system. Therefore, they have an understanding in database administration and
how to write SQL queries.

2.2 Constraints

2.2.1 Regulatory policies

The manager is allowed to monitor all chats. CSRs will have different interfaces from
customer interfaces. Also, the manager’s interface must be slightly altered from the interface of
CSRs. Manager’s interface includes extended functionality. Managers are allowed to view
previous chat log histories and to view current dialogues between CSRs and customers. CSRs
have the ability to place hidden comments on the customer’s account for other CSRs to view.
Due to the nature of a chat support system, customers are assumed to be at a novice level in
computer use. Therefore, the customer interface will remain uncluttered and contain basic
functionality. The customers only have the ability to view the current chat log and to send
messages.

2.2.2 Reliability Requirements

The customer will be able to activate the live chat support system with the expectation
that the MTBF or Mean Time between Failure is one month. In addition, the live chat support
system is to be deployable from a web browser without the necessary installation of it as a
standalone application. In other words, the customer should not have to download an executable
file in while to install a program that provides chat support. The system shall be deployable at
any time during the course of a day; this excludes periods where the system may undergo
maintenance or where there may be hardware failure.

2.2.3 Criticality of the System

The chat support system provides help for customers who have questions regarding
services or goods. Therefore, it is not essential for the system to be operable 100% of the time
after deployment. It is not intended for circumstances in which lives depend on the proper
functionality of the system.

 5

2.2 Constraints (Continued…)

2.2.4 Safety and Security Considerations

Security regarding internet chat logs is not a priority. However, one precautionary
measure should be taken. The IP addresses of customers seeking CSR’s support must be
tracked. The purpose of this implementation is that CSRs do not create fraudulent customers and
reap the benefits from providing more customer support. Since CSRs are to be compensated on
a per customer basis, this feature is particularly vital to the integrity of the chat support system.
The system connections are not required to have encryption in place. The security of the chat
dialogues between CSRs and customers are projected to be minimal.

2.3 System Environment

The system will be run on UNIX and Windows machines. Also, it will be able to run on

a 2.53 GHz Pentium IV with 512MB of memory and a broadband Internet connection. The
server will run on a server machine, and the customers will run on individual customer machines.
The system must be written in Java 1.5.xx using SWING to meet GUI requirements. And for
network communication, the Java RMI protocol will be used.

 6

3.1 Overview

The software architecture for online chat support system is based on the Client/Server

architecture style. Client and Server will communicate with each other using the Java RMI
protocol. The client program uses Java SWING for the UI. Clients will communicate their
requests to the Server and the Server will carry them out. The system is decomposed in
customer, CSR, manager, database subsystems, and all subsystems communicate through the
server.

3.2 Rationale

The Client/Server architecture style is logical choice because it allows multiple users

accessing on the server and centralized data such as access control, synchronization, concurrency
control, and data backup.

 7

4.1 Conceptual View

The Web Server, Database, and Server machines can all be separate or in fact be running
on one machine. The web server delivers the applets via Java WebStart, launch from a web site.
The customer registers new accounts from a webpage.

The Customer, CSR and Manager applets after launch establish a connection with the
Server Java Application on the Server machine. The Customer Registration Web Page interacts
with the Database without having to access the Server Java Application.

 8

This section is gives a description of the low-level design of the system. It contains the break
down of the over all system into it's individual subsystems and the classes that compose each
subsystem. Each class and its methods are described fully and the interactions between class
methods are shown in terms of subsystem interactions shown in the subsystem diagram. In
addition the interaction between classes are shown through sequence diagrams that represent the
primary interactions of users with the system and which classes take part in the particular
interaction.

5.1 Module 1..n
- Analysis Diagram

- Subsystem Diagram

 9

- Data Dictionary

LogSubsystem

Entity Class: LogCollection
Responsibilities Collaborators Attributes Operations
Stores and
maintains the logs
of all the registered
customers

- Log
- Chat

- logCollection isEmpty
- returns true if there are no
logs in the collection

addLog
- enables a client to add a Log
to the collection

deleteLog
- enables the client to delete a
Log from the collection

doesLogExist
- returns true if a Log
associated with a given
customer id exist in the
collection

getLog
- returns the Log that is

associated with the give
customerId

getNumberOfLogs
- returns the number of Logs in
the collection

LogCollection
Attributes:

Array CustomerLogsArray []
//Stored in alphabetical order by customer account Id ??

Methods:

public boolean isEmpty();
//pre: none
//post: returns true if there are no customer chat logs in the collection

 10

LogCollection (Continued…)
Methods:

public void addLog(Log aCustomerChatLog)
//pre: none
//post: aCustomerChatLog has been added to the collection of all //customer chat logs

public void deleteLog(String: customerId)
//pre: doesLogExist(customerId) == true;
//post: Log that belongs to a customer with id == customerId has been deleted

public boolean doesLogExist(String: customerId)
//pre: none
//post: returns true if a Log in the log collection is associated with a
//customer with id == customerId
public Log getLog(String: customerId)
//pre: doesLogExist(customerId) == true;
//post: the Log associated with customerId has been returned

public integer getNumberOfLogs()
//pre: none
//post: the number of Logs in Log Collection has been returned

Entity Class: Log
Responsibilities Collaborators Attributes Operations
Stores and
maintains all
the chats that a
single
registered user
has made.

- LogCollection
- Chat

- chatsCollection
- customerId

isEmpty
- returns true if there are no
Chats in this log

getChats
- returns all Chats that were
created in between the given
dates

getCustomerComments
- returns all the customer
comments associated with all
the Chats in this Log

getCSRComments
- returns all the CSR comments
associated with all the Chats in
this Log

 11

Entity Class: Log (Continued…)
Responsibilities Collaborators Attributes Operations
Stores and
maintains all
the chats that a
single
registered user
has made.

- LogCollection
- Chat

- chatsCollection
- customerId

getCustomerId
- returns the Chat associated
with the given chat number

getNumberOfChatSessions()
- returns the number of Chats
in this log

getCustomerId
- returns the customer id
associated with this log

setCustomerId
- sets the Id of the customer
associated with this Log

addChat
- adds a chat to this Log

Log
Attributes:
 Array individualChatsArray []
 //Stored chronologically from earliest time to latest
 String customerId //id of the customer this Log belongs to

Methods:
 public boolean isEmpty()
 //pre: none
 //post: returns true if the this Log contains no chats

public Array[] getChats(Date: startDate, endDate)
 //pre: startDate <= endDate
 //post: an array that contains all chats in this Log where

// startDate <= aChat.getDate() <= endDate

public Array[] getCustomerComments()
//pre: isEmpty() == false
//post: an array customer comment strings arereturned

 public Array[] getCSRComents()
//pre: isEmpty() == false
//post: an array CSR comment strings is returned

 12

Log (Continued...)
Methods:

public int getNumberOfChatSessions()
//pre: none
//post: the number of chat sessions in this Log has been returned

public void addChat(Chat aChat)
//pre: none
//post: aChat has been added to this Log

public Chat getChat(Int: chatNumber)
//pre: 1 <= chatNumber <= getNumberOfChatSessions
//post: the chat session with Chat.getChatNumber() == chatNumber has been returned

 public String getCustomerId()
 //pre: setCustomerId(customerId)
 //post: customerId has been returned

 public void setCustomerId(String customerId)
 //pre: none
 //post: the owner of this Log has been set to customerId

Entity Class: Chat
Responsibilities Collaborators Attributes Operations
Stores the
information for a
single chat session

- LogCollection
- Log

- moderator
- chatNumber
- date
- CustomerComment
- numberCustComm
- CSRComment
- NumberCSRComm
- ChatText
- chatStartTime
- chatEndTme

getModerator
- returns the Id of the
moderator for this Chat

setModerator
- sets the Id for the
moderator for this chat to
mId

getCustomer
- gets the customerId for
this chat

setCustomer
- sets the customeId

setChatNumber
- sets the unique chat
number for this Chat

 13

Entity Class: Chat (Continued…)
Responsibilities Collaborators Attributes Operations
Stores the
information for a
single chat session

- LogCollection
- Log

- moderator
- chatNumber
- date
- CustomerComment
- numberCustComm
- CSRComment
- NumberCSRComm
- ChatText
- chatStartTime
- chatEndTme

 getChatNumber
- returns the Chat Id for this
Chat

setDate
- sets the Date that this chat
was created

getDate
- returns the Date that this
chat was created

setCustomerComment
- sets the customer
comment for this Chat

getCustComment
- returns the customer

comment associated
with this Chat

setCSRComment
- sets the CSR comment for
this Chat

getCSRComment
- returns the CSR comment
for this Chat

addChatLine
- adds a Line of text for this
Chat

getChatLine
- returns the text of a given
line number

editChatLine
- sets the given chat line to
be a new string S

 14

Entity Class: Chat (Continued…)
Responsibilities Collaborators Attributes Operations
Stores the
information for a
single chat session

- LogCollection
- Log

- moderator
- chatNumber
- date
- CustomerComment
- numberCustComm
- CSRComment
- NumberCSRComm
- ChatText
- chatStartTime
- chatEndTme

getNumberOfChatLines
- returns the number of
lines of text in this Chat

setStartTime
- sets the starting time of
this Chat

getStartTime
- returns the start time of
this Chat

setEndTime
- sets the end time of this
Chat

getEndTime
- returns the end time of
this Chat
setCSRRating
- sets the rating given to the
CSR in this Chat

getCSRRating
- returns the rating given to
the CSR in this Chat

ChatInterface
Attributes:
 String moderatorId

String customerId
 int chatNumber
 Date chatDate
 String customerComment
 String CSRComment

Array[] chatText

Methods:
 public void setModerator(String moderatorId)
 //pre: none
 //post: the moderator for this chat has been set to moderatorId

 15

ChatInterface (Continued…)
Methods:
 public String getModerator()
 //pre: setModerator(moderatorId)
 //post: moderatorId has been returned

public void setCustomer(String customerId)
 //pre: none
 //post: the customer for this chat has been set to customerId

 public String getCustomer()
 //pre: setCustomer(customerId)
 //post: customerId has been returned

 public void setChatNumber(int: chatNumber)
 //pre: none
 //post: the id number of this Chat has been set to chat Number
 public int getChatNumber()
 //pre: setChatNumber(chatNumber)
 //post: chatNumber has been returned

 public void setDate(Date: theDate)
 //pre: none
 //post: the date of this Chat has been set to theDate

 public Date getDate()

//pre: setDate(theDate)
 //post: theDate has been returned

public void setStartTime(Stirng: sTime)
//pre: none

 //post: start time for the chat has been set to sTime

 public String getStartTime()

//pre: setStartTime(sTime)
//post: sTime has been returned

public void setEndTime(Stirng: eTime)
//pre: none

 //post: end time for the chat has been set to eTime

 public String getEndTime()

//pre: setEndTime(eTime)
//post: eTime has been returned

 16

ChatInterface (Continued…)
Methods:
 public void setCustomerComment(String: theCustComment)

//pre: none
 //post: this Chat’s customer comment has been set to theCustComment

public String getCustomerComment()
//pre: setCustomerComment(theCustComment)

 //post: theCustComment has been returned

public void setCSRComment(String: theCSRComment)
//pre: none

 //post: this Chat’s CSR comment has been set to theCSRComment

public String getCSRComment()
//pre: setCustomerComment(theCSRComment)

 //post: theCSRComment has been returned

public void addChatLine(String: chatLine)
//pre: none

 //post: a line of text == chatLine has been added to this chat

 public void editChatLine(int lineNumber, String newText)

//pre: 0 < lineNumber<= getNumberOfChatLines()
 //post: the text on lineNumber has been changed to newText

public String getChatLine(int lineNumber,)
//pre: 0 < lineNumber<= getNumberOfChatLines()

 //post: the text on lineNumber has been returned

public int getNumberOfChatLines()
//pre: none

 //post: the number of lines of text in this Chat has been returned

public void setCSRChatRating(int: csrRating)
//pre: none

 //post: the CSR’s rating for this Chat has been set to csrRating

public int getCSRChatRating()
//pre: setCSRChatRating(csrRating)
//post: csrRating has been returned for this Chat.

 17

CustomerSubsystem

Entity Class: CustomerUI
Responsibilities Collaborators Attributes O Operations
To provide a
registered
customer with an
interface to
access and
utilize the system

- CustomerAccountCollection
- CustomerAccount custAcc

- UserName
- Password
- Email
- FirstName
- LastName

loginUserName
- logs into the system

enterCustomerQueue
- enters the customer into
the chat queue to speak to a
CSR or manager

sendMessage
- send message to CSR or
manager

deleteChatComment
- delete comment of a chat
session

viewCurrChatLog
- view current chat log

viewChatHistory
- view chat history of
customer with CSRs

editOwnAccount
- change own customer
account

CustomerUI
Attributes:

String password;
String loginUserName;
String msg;
Chat theChat;
Log theLog;
CustomerAccount custAcc

 18

CustomerUI (Continued…)
Methods:

public void loginUserName(String UserId, String password);
// pre: none
// post: customer with the associated account is connected to the server

public void enterCustomerQueue();
// pre: none
// post: customer has been entered into the chat queue

public String sendMessage(String msg);
// pre: none
// post: customer’s typed input is sent to the server

public String viewCurrChatLog();
// pre: none
// post: customer’s current chat dialogue with CSR is displayed

public Log viewChatHistory();
// pre: none
// post: customer’s chat history/log is returned

public void editOwnAccount(CustomerAccount custAcc)
// pre: none
// post: customer’s own account has been edited

 19

Entity Class: CustomerAccount
Responsibilities Collaborators Attributes Operations
To store
information on
the customer

- Log
- CustomerAccountCollection
- CustomerQueue

- userId
- firstName
- lastName
- phone
- email

checkUser
- authorizes user with valid
userId and password

getUserID
- get customer userID

getFirstName
- get customer first name

getLastName
- get customer first name

getTelephoneNum
- get customer phone
number

getEmailAddress
- get customer email address

getPassword
- get manager password

editUserID
- change manager user ID

editFirstName
- change manager first name

editLastName
- change manager last name

editTelephoneNum
- change manager phone
number

editEmailAddress
- change manager email
address

editPassword
- change manager password

 20

CustomerAccount
Attributes:
 String userID;

String firstName;
String lastName;
String telephoneNum;
String emailAddress;

 String password;

Methods:

public Bool checkManager(String password);
// pre: none
// post: authenticates customer if the given password matches the password in the
customer account

public String getUserID();
//pre: none
//post: customer userID has been returned

public String getFirstName();
//pre: none
//post: customer first name has been returned

public String getLastName();
//pre: none
//post: customer last name has been returned

public String getTelephoneNum();
//pre: none
//post: customer phone number has been returned

public String getEmailAddress();
//pre: none
//post: customer email address has been returned

public String getPassword();
//pre: none
//post: customer password has been returned

public String editUserID(String userID);
//pre: none
//post: customer user name has been changed

 21

CustomerAccount (Continued…)
Methods:

public String editFirstName(String firstName);
//pre: none
//post: customer first name has been changed

public String editLastName(String lastName);
//pre: none
//post: customer last name has been changed

public String editTelephoneNum(String telephoneNum);
//pre: none
//post: customer phone number has been changed

public String editEmail(String email);
//pre: none
//post: customer email has been changed

public String editPassword(String password);
//pre: none
//post: customer password has been changed

 22

Entity Class: CustomerAccountCollection
Responsibilities Collaborators Attributes Operations
To maintain
information
regarding
registered
customers of the
system.

- CustomerAccount
- CustomerUI

- userId
- email
- password
- firstName
- lastName
- CustomerAccountColl

addUser
- adds a new user into
CustomerAccount
collection

checkCustomerAccount
- check for the existence
of userName

isExist
- check if there is a
manager account with the
associated email in the
collection

AddManager
- add a new manager
account into the Manager
AccountCollection

deleteManager
- remove an existing
manager account from
the
ManagerccountCollection

getAccount
- retrieve the
ManagerAccount
associated with the
userID from the
collection

getSize
- calculate the number of
manager account in the
collection

getArray
- return the array of all
managers account in the
system

 23

CustomerAccountCollection
Attributes:

Array CustomerAccountCollection [];
// stored in alphabetical order by Customer account userName;
String userName;
String email;
String password;
String firstName;
String lastName;

Methods:

public void addUser((String FirstName, String LastName, String phone, String email,
String password);
// pre: none
// post: inserts essential customer account information

public bool checkCustomerAccount();
// pre: none
// post: returns true/false regarding the existence of the customer account

public ManagerAccount getArray();
// pre: none
// post: return the array of all customer accounts in the system

Entity Class: CustomerQueue
Responsibilities Collaborators Attributes Operations
To maintain the
order of the
customers
requesting to
speak with a CSR
or manager

- CustomerAccount
- CSRAccount
- ManagerAccount

- QueueSize
(same as
numberInQueue)

isEmpty
- checks to see if the queue
is empty of customers

enqueue
- adds a customer into the
queue for chat request

dequeue
- pops a customer off the
queue to speak with a CSR
or Manager

 24

CustomerQueue
Attributes:

int QueueSize;
String UserId;

Methods:

public bool isEmpty();
// pre: none
// post: returns true/false stating whether the queue is empty or not

public void enqueue(String UserId);
// pre: none
// post: enters a customer with their corresponding userId into the chat queue

public String dequeue()
// pre: queue is not empty
// post: pops off a customer off of the chat queue

CSRSubsystem

 Entity Class: CSRUI
Responsibilities Collaborators Attributes Operations
To provide a
registered CSR
with an interface
in order to access
the system

- CustomerAccountCollection
- CSRAccountCollection

- userId
- password
- name
- phone
- email
- userClass

Login
- log in the system with
userId and password

Register
- a new CSR account will
be created.

ViewCustomerAccount
- get all the registered
customers and display

DeleteCustomer
- delete the registered
customer

UpdateCustomer
- update a list of the
registered customer

 25

CSRUI
Attributes:
 String userId;
 String password;
 String name;
 String phone;
 String email;
 int userClass;

Methods:
 public void Login(String userId, String password)
 // pre: none
 // post: CSR account with the associated userID and password is connected to the server

 public void Register(string userId, string password, string name, string phone, string

email, int userClass)
 // pre: the userId doesn’t exit in the collection of user account
 // post: register a new CSR in the collection of user account

 public void ViewCustomerAccount()
 // pre: none
 // post: display all customer account

 public void DeleteCustomer(string userId)
 // pre: customer userID exits in the collection of user account
 // post: the chosen customer account has been deleted from the collection of user account

 public void UpdateCustomer(string userId)
 // pre: customer userId exits in the collection of user account
 // post: the chosen customer account has been updated from the collection of user account

 26

Entity Class: CSRAccount
Responsibilities Collaborators Attributes Operations
To maintain a
registered CSR’s
information

- CustomerQueue
- CSRAccountCollection

- CSRId
- password

getCSRId
- get CSR Id

getPassword
- get CSR password

getName
- get CSR name

getEmail
- get CSR email

getPhone
- get CSR phone

editPassword
- change CSR password

editName
- change CSR name

editPhone
- change CSR phone

editEmail
-

checkCSR
- authorize the CSR with a
valid CSRId and password.

CSRAccount
Attributes:
 String userId;
 String password;
 String name;
 String email;
 String phone;

 27

CSRAccount (Continued…)
Methods:
 public string getCSRId()
 // pre: none
 // post: return CSR userId

 public string getPassword()
 // pre: none
 // post: return CSR password

 public string getName()
 // pre: none
 // post: return the name of CSR

 public string getPhone()
 // pre: none
 // post: return CSR phone

 public string getEmail()
 // pre: none
 // post: return CSR email

 public string editPassword()
 // pre: CSR usrID already exits in the collection of CSR
 // post: return changed CSR password

 public string editName()
 // pre: CSR usrID already exits in the collection of CSR
 // post: return changed CSR name

 public void editPhone()
 // pre: CSR usrID already exits in the collection of CSR
 // post: return changed CSR phone

 public void editEmail()
 // pre: CSR usrID already exits in the collection of CSR
 // post: return changed email

 public void checkCSR()
 // pre: none
 // post: authenticate if the given userId and password match in the CSR account collection

 28

Entity Class: CSRAccountCollection

Responsibilities Collaborators A Attributes Operations
To maintain
information about
registered CSR of the
system.

- CSRAccount
- CSRUI

- CSRId addCSR
- add a new CSR into the
CSRAccountCollection

deleteCSR
- delete a new CSR from the
CSRAccountCollection

getCSRAccount
- retrieve the CSR account
associated with CSR userId from
the collection of CSR account

checkAccount
- check whether the CSRId
exists or not

CSRAccountCollection
Attributes:
 Array CSRAccountArray[] // stored in alphabetical order by CSR account name
 String userId;
 String password;
 String name, phone, email;
 int userClass; // 1-customer, 2-CSR, 3-manager

Methods:
 public void AddCSR(string userId, string password, string name, string phone, string

email, int userClass)
 // pre: CSR account with the given userId doesn’t exit in the collection of CSR account.
 // post: a new CSR account has been added to the collection of all CSR

public void DeleteCSR(string userId)
 // pre: CSR account with the given userId exits in the collection of CSR
 // post: a new CSR account has been deleted from the collection of all CSR

public CSRAccount getCSRAccount(string userId)
 // pre: CSR account with the given userId exits in the collection of CSR
 // post: a chosen CSR account has been returned.

 public void checkAccount()
 // pre: none
 // post: return true if a CSR account with the given userId exits in the collection

 29

Entity Class: CustomerQueue
Responsibilities Collaborators Attributes Operations
To maintain information
about customers in
queue.

- CSRAccount - customerId getCustomer
- get next requested customer
from the queue.

getNumCustomer
- get the number of customer in
the queue.

enqueue
- add a customer in queue.

dequeue
- delete a customer from queue.

checkQueue
- return true if a customer in
queue, otherwise return false.

CustomerQueue
Attributes:
 String userId;

Methods:
 public string getCustomer(userId)
 // pre: none
 // post: get the customer with the given userId.

 public int getNumCustomer()
 // pre: none
 // post: get the number of customers in the queue.

 public void enqueue(string userId)
 // pre: none
 // post: enqueue a new customer in the queue.

 public void dequeue(string userId)
 // pre: none
 // post: dequeue an existed customer in the queue.

 public boolean checkQueue()
 // pre: none
 // post: return true if a customer in queue, otherwise return false.

 30

ManagerSubsystem

Entity Class: ManagerUI
Responsibilities Collaborators Attributes Operations
To provide the
manager with an
interface in order
to access the
system

- ServerConnection - emailAddress
- password
- customerAccount
- csrAccount
- managerAccount
- theChat
- theLog

Login
- log in the system

selectCustomer
-select a customer from a chat
queue

startChat
- invoke a chat session

endChat
- end a chat session

addChatComment
- add a comment to a chat
session

deleteChatComment
- delete comment of a chat
session

addCustomerComment
- add a comment to a customer
account

editCustomerComment
- edit comment in a customer
account

viewCustomerComment
- view comment in a customer
account

deleteCustomerAccount
- remove customeraccount from
the customeraccountcollection

editCustomerAccount
- change customer account
information

 31

Entity Class: ManagerUI (Continued…)
Responsibilities Collaborators Attributes Operations
To provide the
manager with an
interface in order
to access the
system

- ServerConnection - emailAddress
- password

customerAccount
- csrAccount

managerAccount
- theChat
- theLog

viewChatLog
- open a chat log

createCSRAccount
- create a new CSR account
and add it to the
CSRAccountCollection

deleteCSRAccount
-remove CSR account from
the csraccountcollection

editCSRAccount
- change CSR account
information

createManagerAccount
- add a new manager
account to
manageraccountcollection

editManagerAccount
- change manager account
information

deleteManagerAccount
- remove manager account
from the
manageraccountcollection

monitorChat
- join an ongoing chat

generateReport
- create a statistic report
and open it

viewOnlineCSR
- open the list of CSR that
is currently online

 32

ManagerUI
Attributes:

String emailAddress;
 String password;

String customerAccount;
 String csrAccount;

String customerAccount;
 String csrAccount;

Chat theChat;
 Log theLog;

Methods:

public void createCSRAccount(CSRAccount csrAccount);
//pre: none
//post: csrAccount is created and added to the csrAccountCollection

public void deleteCSRAccount(CSRAccount csrAccount);
//pre: none
//post: csrAccount is deleted from the csrAccountCollection

public void editCSRAccount(CSRAccount csrAccount)
//pre: none
//post: csrAccount is changed.

 public void createManagerAccount(ManagerAccount managerAccount);
//pre: none
//post: managerAccount is created and added to the managerAccountCollection

public void editManagerAccount(ManagerAccount managerAccount)
//pre: none
//post: managerAccount is changed.

public void deleteManagerAccount(ManagerAccount managerAccount)
//pre: none
//post: managerAccount is deleted from the managerAccountCollection

public String generateReport();
//pre: chats exist
//post: return the statistic report of all chats

public void monitorChat(Chat theChat);
//pre: chat is ongoing
//post: manager join a chat session in invisible mode

 33

ManagerUI (Continued…)
Methods:

public CSRAccountarray viewOnlineCSR();
//pre: none
//post: return the array of CSR that are currently active in the system

This method is inherited from CSR class (according to the use case diagram)

public void login(string emailAddress, string password);
//pre: none
//post: manager account with the associated email is connected to the server

public void selectCustomer();
//pre: none
//post: a customer from the chat queue is selected

public void startChat();
//pre: none
//post: a chat session in invoked

public void endChat();
//pre: none
//post: a chat session terminated

public void addChatComment(Chat theChat, String theComment);
//pre: none
//post: comment is added to the log of a chat

public void deleteChatComment(Chat theChat);
//pre: none
//post: comment is deleted from the log of a chat

public void addCustomerComment(Chat theChat, String theComment);
//pre: none
//post: comment is added to the log of a chat

public void editCustomerComment(Chat theChat);
//pre: none
//post: comment is deleted from the log of a chat

public string viewCustomerComment(Chat theChat);
//pre: none
//post: return the comment of both CSR and customer on a particular chat

 34

ManagerUI (Continued…)
Methods:

public string editCustomerAccount(CustomerAccount customerAccount);
//pre: none
//post: customerAccount is changed
public void deleteCustomerAccount(CustomerAccount customerAccount);
//pre: none
//post: customerAccount is deleted from the customerAccountCollection

public string viewChatLog(Log theLog);
//pre: none
//post: return the chat log.

Entity Class: ManagerAccount
Responsibilities Collaborators Attributes Operations
To maintain a
manager
information

- ManagerAccountColl - userID
- firstName
- lastName
- telephoneNum
- emailAddress
- password

ManagerAccount
- a constructor to create a new
manager account

getUserID
- get manager userID

getFirstName
- get manager first name

getLastName
- get manager first name

getTelephoneNum
- get manager phone number

getEmailAddress
- get manager email address

getPassword
- get manager password

editUserID
- change manager user ID

editFirstName
- change manager first name

 35

Entity Class: ManagerAccount
Responsibilities Collaborators Attributes Operations
To maintain a
manager
information

- ManagerAccountColl - userID
- firstName
- lastName
- telephoneNum
- emailAddress
- password

getLastName
- get manager first name

getTelephoneNum
- get manager phone number

getEmailAddress
- get manager email address

getPassword
- get manager password

editUserID
- change manager user ID

editFirstName
- change manager first name

editLastName
- change manager last name

editTelephoneNum
- change manager phone
number

editEmailAddress
- change manager email

editPassword
- change manager password

checkManager
- authorize the manager with
a valid userID and password

ManagerAccount
Attributes:
 String userID;

String firstName;
String lastName;
String telephoneNum;

 36

ManagerAccount (Continued…)
Attributes:

String emailAddress;
 String password;

Methods:

public ManagerAccount(String UserID, String firstName, String lastName, String
telephoneNum, String emailAddress, String password)
//pre: none
//post: a new manager account is returned

public String getUserID();
//pre: none
//post: manager userID has been returned

public String getFirstName();
//pre: none
//post: manager first name has been returned

public String getLastName();
//pre: none
//post: manager last name has been returned

public String getTelephoneNum();
//pre: none
//post: manager phone number has been returned

public String getEmailAddress();
//pre: none
//post: manager email address has been returned

public String getPassword();
//pre: none
//post: manager password has been returned

public String editUserID(String userID);
//pre: none
//post: manager user name has been changed

public String editFirstName(String firstName);
//pre: none
//post: manager first name has been changed

 37

ManagerAccount (Continued…)
Methods:

public String editLastName(String lastName);
//pre: none
//post: manager last name has been changed

public String editTelephoneNum(String telephoneNum);
//pre: none
//post: manager phone number has been changed

public String editEmail(String email);
//pre: none
//post: manager email has been changed

public String editPassword(String password);
//pre: none
//post: manager password has been changed

public String checkManager(string emailAddress, string password);
//pre: none
//post: authenticate if the given password match the password of the manager account
associated with the given email

 38

Entity Class: ManagerAccountCollection
Responsibilities Collaborators Attributes Operations
To maintain
information
about registered
manager of the
system.

- ServerConnection - ManagerAccountArray

ManagerAccountCollection
- check if there is a
manager account in the
collection

isEmpty
- check if there is a
manager account in the
collection

isExist
- check if there is a
manager account with the
associated email in the
collection

AddManager
- add a new manager
account into the Manager
AccountCollection

deleteManager
- remove an existing
manager account from the
ManagerccountCollection

getAccount
- retrieve the
ManagerAccount
associated with the userID
from the collection

getSize
- calculate the number of
manager account in the
collection

getArray
- return the array of all
managers account in the
system

 39

CSRAccountCollection
Attributes:

ManagerAccount ManagerAccountArray []
//Stored in alphabetical order by manager account name

Methods:

public ManagerAccountCollection()
//pre: none
//post: returns a new empty ManagerAccountCollection

public boolean isEmpty();
//pre: none
//post: returns true if there are no manager account in the collection

public boolean isExist(String userID)
//pre: none
//post: returns true if a manager account with the given userID exist in the //collection

public void addAccount(ManagerAccount newAccount)
//pre: none
//post: a new manager account has been added to the collection of all //manager

public void deleteAccount(String userID)
//pre: manager account with the given userID already exist in the collection
//post: the chosen manager account has been deleted from the collection //of all manager

public ManagerAccount getAccount(String userID)
//pre: a manager with the given userID exist in the collection
// post: the chosen manager account has been returned

public int getSize()
//pre: none
//post: the number of manager account in Manager account Collection has been returned

public ManagerAccountArray getArray()
//pre: none
//post: return the array of all manager account in the system

 40

Database System

The database structure will be created as specified by the following standard SQL queries. The
database name is ‘chatsystem’ in the MySQL database.

Users table specifies all users in the system, and the role type is identified by the class column.
The class can have a value of 1,2 or 3. Where 1 = Customer, 2 = CSR, and 3 = Manager.

CREATE TABLE Users (
 userid char(16),
 password char(16),
 lastname char(20),
 firstname char(20),
 email char(40),
 phone char(16),
 class tinyint,
 PRIMARY KEY (userid)
);

The ChatLog contains each individual chat session identified by a Chat Session Number (CSN)

CREATE TABLE ChatLog (
 CSN int unsigned NOT NULL auto_increment,
 datetime timestamp,
 custuserid char(16),
 csruserid char(16),
 duration smallint unsigned,
 waittime smallint unsigned,
 custrating tinyint(1),
 custcomment varchar(255),
 csrcomment varchar(255),
 PRIMARY KEY (CSN)
);

All lines of chat in the system are recorded as entries in the ChatMessages table, which are
identified by a unique combination of CSN and line values.

CREATE TABLE ChatMessages (
 CSN int unsigned,
 line int unsigned NOT NULL,
 userid char(16),
 datetime timestamp,
 textmessage varchar(255)
);

 41

The following subsystems are done entirely with PHP code on a website

Customer Registration Subsystem

Attributes:

userid
password
confirmPassword
lastname
firstname
email
phone

Methods:
 Submit
 // the form will post the information and the php code will update the database with the

new data and insert a new user of class = 1 (Customer). The user will be notified if he
provided an inappropriate password or email or phone number.

 // pre: All fields are filled, password and confirmPassword are equal
 // post: If the userid is not already used in the database, then the new account is added.
 else, the user will be displayed a notification that the userid is already in use.

Login Subsystem

Attributes:

userid
password

Methods:
 Submit
 // the form will post the information and the php code will query the database to

determine if the userid and password is matches. If it does, then the class of the matching
tuple will determine which applet is sent to the client.

 // pre: All fields are filled
// post: If the user name and password is correct, the appropriate Applet will be launched

on the clients machine.

 42

Customer Sequence Diagram

- chat with CSR

- edit own account information

 43

- view own chat log

CSR Sequence Diagram

- chat with customer

 44

- view logs

- edit own account

 45

Manager Sequence Diagram

- create/edit/delete CSR
. create CSR

. edit CSR

 46

. delete CSR

- create/edit/delete Manager
. create Manager

 47

. edit Manager

. delete Manager

 48

- monitor chat

- print report

 49

6.1 Application Control

The Application will be designed with ease of use for end user in mind. With this view it
was decided that all user classes will share the same basic design with differing functionality. So
the starting login webpage will be shared by all users. The Chat application will be divided into
three GUIs according to class the user belongs to (Customer/CSR/Manager).

All three GUIs will share the same menu system:

--File Menu
-Customer :: Quit
-CSR :: Accept Chat, Quit
-Manager :: Accept Chat, Monitor Chat, Quit

 -Chat History
 -Customer :: View own Chat Logs
 -CSR :: View own or Customer (enter userid) Chat logs
 -Manager :: View any Chat logs (enter userid)

 -Account Management
 -Customer :: View/Edit own Account information
 -CSR :: View/Edit own or Customer (enter userid) Account information
 -Manager :: View/Edit (enter userid) any Account Information

Beneath the Menu a Chat Control Panel will be provided. This panel will be shared by all three
GUIs. It will contain a text box for message, Send and LogOut buttons.

Under The Chat Control Panel the main messaging window will be located. For CSR and
Managerial GUIs this window will contain an additional panel on left side. The additional panel
will provide a list of user in queue (CSR/Manager) and list of ongoing chats with ability to
monitor (Manager). The Customers GUI will provide only the messaging window.

 50

6.2 Screen 1..n

Login GUI:

 -any of the three classes of users and enters their user name and password.
The server will determine the class user belongs to and send appropriate GUI.

Upon successful authentication one of the following GUIs will be displayed:

 51

Customer GUI:

 -basic chat functionality is provided
 -the customer has the ability to view/edit Customer’s own account information (Account

Management Menu)
 -can also view their own Chat Logs (Chat History Menu)

 52

CSR GUI:

 - in addition to regular Customer user interface the CSR GUI provides the ability to

monitor ongoing Customer Queue and initiate a chat with a customer (next in queue)
(click Connect), the ability to edit a Customer’s Account (Account Management Menu
and enter userid)

 53

Manager GUI:

 -in addition to entire functionality provided by the CSR User Interface, the manager has

the ability to monitor live chat conducted by other CSRs, and the manager can edit both
CSR and Customer accounts.

 -to monitor chat a current chat session between a customer and CSR is selected and

monitor clicked.

 -to edit CSR/customer accounts the account management menu is selected and user name

entered.

 54

